Mechanisms of Taxol-induced cell death are concentration dependent.
نویسندگان
چکیده
Although the ability of Taxol to stabilize cellular microtubules is well accepted, the mechanisms by which Taxol induces growth arrest and cell death remain unclear. Recent evidence indicates that Taxol alters specific intracellular signal transduction events, such as the activation of Raf-1 kinase, that may be essential for drug-induced apoptosis. To determine whether Raf-1 kinase activation occurs at different concentrations of Taxol and in response to disruption of the normal microtubule cytoskeleton, A549 cells were treated with different concentrations of Taxol after which Raf-1 activation and the microtubule cytoskeleton were analyzed. Raf-1 activation was observed at Taxol concentrations of 9 nM and greater. However, disruption of the normal microtubule cytoskeleton was seen at lower Taxol concentrations (1-7 nM), indicating that this process begins in the absence of Raf-1 activation. Raf-1 activation correlated with the induction of a G2-M block. Depletion of Raf-1 resulted in the accumulation of cells in the G2-M phase of the cell cycle, suggesting that Raf-1 may play an important role in the passage through mitosis. Supporting this idea, Raf-1 was activated in mitotic cells. Low concentrations of Taxol induced cell death in the absence of Raf-1 activation, indicating that Taxol-induced cell death is not dependent on Raf-1 activation. At concentrations of drug lower than the critical concentration required for Raf-1 activation, p53 and p21(WAF-1) were induced independently of Raf-1. These studies suggest that Taxol-mediated cell death may result from two different mechanisms. At low Taxol concentrations (< 9 nM), cell death may occur after an aberrant mitosis by a Raf-1 independent pathway, whereas at higher Taxol concentrations (> or = 9 nM) cell death may be the result of a terminal mitotic arrest occurring by a Raf-1-dependent pathway.
منابع مشابه
Mechanisms of Taxol-induced Cell Death Are Concentration Dependent1
Although the ability of Taxol to stabilize cellular microtubules is well accepted, the mechanisms by which Taxol induces growth arrest and cell death remain unclear. Recent evidence indicates that Taxol alters specific intracellular signal transduction events, such as the activation of Raf-1 kinase, that may be essential for drug-induced apoptosis. To determine whether Raf-1 kinase activation o...
متن کاملبررسی مقایسه اثر آپوپتوزی دو گونه آرتمیزیای بومی ایرانی (Artemisia scoparia nd sieberi) با تاکسول بر رده سلولی SK-BR-3 سرطان سینه
Background: Breast cancer is one of the most common cancers among women. Chemotherapy drugs such as taxol often lead to toxicity. Artemisia from Asteraceae family, contain flavonoids such as Artemisin which is one of the most important medicinal plants in the world. Therefore, in the present study the cytotoxic and apoptotic effects of two ethanol extract (Artemisia scoparia, Artemisia siberia)...
متن کامل15-Deoxy-Δ12,14-Prostaglandin J2 Protects PC12 cells from LPS-Induced Cell Death Through Nrf2 pathway in PPAR-γ Dependent Manner
Introduction: The inflammatory response requires a coordinated integration of various signaling pathway including cyclooxygenase (COX). COX catalyzes the formation of prostaglandins from arachidonic acid. Among prostaglandins, 15-Deoxy-D12, 14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of Peroxisome proliferator-activated receptor-gamma (PPAR-γ), has been demonstrated to have anti-inflam...
متن کاملMolecular mechanisms of the effects of low concentrations of taxol in anaplastic thyroid cancer cells.
Understanding the detailed mechanisms of a chemotherapeutic agent action on cancer cells is essential for planning the clinical applications because drug effects are often tissue and cell type specific. This study set out to elucidate the molecular pathways of Taxol effects in human anaplastic thyroid cancer cells using as an experimental model four cell lines, ARO, KTC-2, KTC-3 (anaplastic thy...
متن کاملTaxol-induced growth arrest and apoptosis is associated with the upregulation of the Cdk inhibitor, p21WAF1/CIP1, in human breast cancer cells.
The anticancer agent, taxol, stabilizes tubulin polymerization, resulting in arrest at the G2/M phase of the cell cycle and apoptotic cell death. However, the molecular mechanism of this growth inhibition and apoptosis is poorly understood. In this study, we used MCF-7 and MDA-MB-231 human breast carcinoma cells which have different estrogen recep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 58 16 شماره
صفحات -
تاریخ انتشار 1998